and four $\mathrm{H}_{2} \mathrm{O}$ molecules. The Ag atom occupies the crystallographic centre of symmetry and also the twofold axis (Fig. 1). One nitrate is located on a twofold axis. In the cation, the Ag atom and the two Co atoms are bridged by two pyrazines. Two O atoms from water moelcules also coordinate to the Ag atom. The angles of both $\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ and $\mathrm{O}-\mathrm{Ag}-\mathrm{O}$ are $180 \cdot 0^{\circ}$. The $\mathrm{Ag}-\mathrm{O}$ bond distance of $2 \cdot 585 \AA$, which is generally considered as a weak bond, is longer than that of $\mathrm{Ag}-\mathrm{N} 2.302 \AA$, and forms the square-planar coordination. The Co atom is coordinated by six N atoms, five from NH_{3} groups and one from pyrazine, forming an octahedral coordination, with the two pyrazine rings being in the same plane. The pyrazine plane is about 86° out of the plane $\mathrm{Co}-\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{N}(5)-\mathrm{N}(6)$ and 102° out of the plane $\mathrm{Ag}-\mathrm{N}(1)-\mathrm{N}(1)^{\prime}-\mathrm{O}-\mathrm{O}^{\prime}$. The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond distances of the bridging pyrazines are not significantly different from pyrazine itself ($\mathrm{C}-\mathrm{N}$ $1-334 \AA, \mathrm{C}-\mathrm{C} 1.378 \AA$). The distance between the cation and anion is about $3 \cdot 4-4 \cdot 0 \AA$, showing the existence of strong Coulombic forces. Some nonbonded distances for $\mathrm{O}-\mathrm{O}$ and $\mathrm{N}-\mathrm{O}$ are less than $3 \AA$, indicating that there are hydrogen bonds.

The structure of the pyrazine-bridged heterobinuclear complex (II) consists of one $\left[\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right) \mathrm{Cu}(\mu\right.$ $\left.\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right) \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} 5^{5+}$ cation and five ClO_{4}^{-}anions. The pyrazine group bridges the Cu and Co atoms (Fig. 2). The Cu atom shows a distorted squareplanar coordination, surrounded by four approximately planar N atoms, $\mathrm{N}(7)$ from pyrazine and $\mathrm{N}(8), \mathrm{N}(9)$ and $\mathrm{N}(10)$ from diethylenetriamine. As in $\mathrm{Cu}, \mathrm{Zn}-\mathrm{SOD}$ (superoxide dismutase) (Tainer, Getzoff, Beem, Richardson \& Richardson, 1982), the bond length off $\mathrm{Cu}-\mathrm{N}$ is about $2 \cdot 0 \AA$, but there is
no $\mathrm{Cu}-\mathrm{O}$ bond at the axial position, and the angles of $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ are different. In $\mathrm{Cu}, \mathrm{Zn}-\mathrm{SOD}, \mathrm{N}(1)-$ $\mathrm{Cu}-\mathrm{N}(3)=160$ and $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(4)=130^{\circ}$, and in the cation of complex (II), $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)=169.2$ and $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(4)=176 \cdot 8^{\circ}$. The Co atom is coordinated by six N atoms, five from NH_{3} groups and one form pyrazine, forming an octahedral coordination. The bond distances and angles around the Co atom are in accord with the corresponding values in the literature (Davis, Dewan \& Lippard, 1981).
The pyrazine group shows a good planar conformation. It makes an angle of about 70° with the plane of diethylenetriamine and thus reduces the repulsion force of two planes, forming a stable configuration.

Each ClO_{4}^{-}anion forms a tetrahedron as usual. The averge bond distance of $\mathrm{Cl}-\mathrm{O}$ is $1.415 \AA$ and $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ bond angles range from 98.0 to $117 \cdot 0^{\circ}$. The distance between cations and anions is about $5 \AA$ showing the existence of strong Coulombic forces. Some distances of $\mathrm{N} \cdots \mathrm{O}$ are less than $3 \cdot 2 \AA$, which implies that there are either hydrogen bonds or close contacts.

References

Creutz, C. \& Taube, H. (1969). J. Am. Chem. Soc. 91, 39883989.

Davis, W. M., Dewan, J. C. \& Lippard, S. J. (1981). Inorg. Chem. 20, 2928-2932.
Lay, P. A., Magnuson, R. H. \& Taube, H. (1988). Inorg. Chem. 27, 2364-2371.
Sheldrick, G. M. (1985). SHELXTL Users Manual. Revision 5.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S. \& Richardson, D. C. (1982). J. Mol. Biol. 160, 181-217.

Acta Cryst. (1991). C47, 1808-1811

Structure of 1,2,3-Tris(dimethylamino)cyclopropenylium Aquatetrachlorooxoniobate(V)

By H. N. Schäfer and H. Burzlaff
Institut für Angewandte Physik, Lehrstuhl für Kristallographie, Universität Erlangen-Nürnberg, Bismarckstraße 10, D-8520 Erlangen, Germany
and A. M. H. Grimmeiss and R. Weiss
Institut für Organische Chemie, Lehrstuhl I, Universität Erlangen-Nürnberg, Henkestraße 42, D-8520 Erlangen, Germany

(Received 9 November 1990; accepted 24 January 1991)

Abstract

C}_{9} \mathrm{H}_{18} \mathrm{~N}_{3}\right]\left[\mathrm{NbCl}_{4} \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)\right], \quad M_{r}=436.997\), triclinic, $P 1, a=12.2716(9), \quad b=8.9682$ (5), $\quad c=$ 8.7625 (5) $\AA, \quad \alpha=70.203$ (9),$\quad \beta=88.242$ (5), $\quad \gamma=$

$$
\begin{aligned}
& 71.299(5)^{\circ}, \quad V=856 \cdot 137 \AA^{3}, \quad Z=2, \quad D_{x}= \\
& 1.695 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \text { Mo } K \alpha, \quad \lambda=0.70926 \AA, \quad \mu= \\
& 13.042 \mathrm{~cm}^{-1}, \quad F(000)=440, \text { room temperature, final }
\end{aligned}
$$

Table 1. Fractional coordinates and $U_{\text {eq }} / U_{\text {iso }}$ values (\AA^{2})

No. in						
Figures		Occupation	x	y	z	U
1	$\mathrm{Nb}(01)$	1.000	0.000	0.000	0.000	0.0381
2	$\mathrm{O}(11)$	1.000	$0 \cdot 1152$ (4)	-0.1722 (6)	0.0114 (7)	0.0593
3	$\mathrm{Cl}(12)$	1.000	-0.1432 (2)	-0.1292 (3)	0.0574 (2)	0.0605
4	$\mathrm{Cl}(13)$	1.000	-0.0572 (2)	0.0938 (3)	-0.2826 (2)	0.0621
5	$\mathrm{Cl}(14)$	1.000	0.1050 (2)	0.1939 (3)	-0.0594 (3)	0.0608
6	$\mathrm{Cl}(15)$	1.000	0.0136 (2)	-0.0225 (3)	0.2780 (2)	0.0622
7	$\mathrm{O}(10)$	1.000	-0.1529 (4)	0.2501 (7)	-0.0222 (7)	0.0574
10	$\mathrm{Nb}(02)$	1.000	0.50995 (5)	0.55386 (7)	0.07325 (7)	0.0359
11	O(21)	1.000	0.6299 (4)	0.3915 (6)	0.0739 (5)	0.0519
12	$\mathrm{Cl}(22)$	1.000	0.3743 (2)	0.4080 (2)	0.1394 (2)	0.0532
13	$\mathrm{Cl}(23)$	1.000	0.4458 (2)	0.6430 (3)	-0.2073 (2)	0.0570
14	$\mathrm{Cl}(24)$	1.000	0.5904 (2)	0.7727 (3)	0.0048 (3)	0.0623
15	$\mathrm{Cl}(25)$	1.000	0.5323 (2)	0.5233 (3)	0.3521 (2)	0.0632
16	O(20)	1.000	0.3414 (4)	0.7800 (7)	0.0710 (6)	0.0542
19	C(10)	1.000	0.0457 (6)	0.5433 (8)	0.5547 (7)	0.0378
20	N(11)	1.000	$0 \cdot 1405$ (5)	0.5671 (7)	0.5913 (7)	0.0486
21	C(12)	1.000	0.2353 (7)	$0 \cdot 555$ (1)	0.482 (1)	0.0604
25	C(13)	1.000	0.144 (1)	0.640 (2)	0.713 (2)	0.0735
29	$\mathrm{C}(20)$	1.000	-0.0633 (3)	0.5446 (9)	0.5864 (8)	0.0418
30	N(21)	1.000	-0.1523 (5)	0.5689 (8)	0.6800 (8)	0.0569
31	C(22)	1.000	-0.150 (1)	0.652 (2)	$0 \cdot 790$ (2)	0.0731
35	C(23)	1.000	-0.2664 (7)	0.583 (1)	0.620 (1)	0.0673
39	C(30)	1.000	-0.0163 (6)	0.5006 (8)	0.4582 (8)	0.0386
40	N(31)	1.000	-0.0236 (5)	0.4462 (7)	0.3402 (7)	0.0489
41	C(32)	1.000	-0.130 (1)	0.434 (2)	0.292 (1)	0.0735
45	C(33)	1.000	0.0684 (9)	0.429 (1)	0.232 (1)	0.0649
49	C(40)	1.000	0.5291 (6)	0.0713 (8)	0.4962 (8)	0.0425
50	N(41)	1.000	0.6199 (5)	0.0332 (8)	0.4100 (8)	0.0481
51	C(4)	1.000	$0 \cdot 605$ (1)	-0.008 (1)	0.270 (1)	0.0713
55	C(43)	1.000	0.7240 (8)	0.067 (2)	0.435 (1)	0.0730
59	$\mathrm{C}(50)$	1.000	0.4803 (6)	$0 \cdot 1240$ (8)	0.6164 (7)	0.0372
60	$\mathrm{N}(51)$	1.000	0.4857 (5)	0.1841 (7)	0.7323 (6)	0.0440
61	C(52)	1.000	0.593 (1)	0.205 (1)	0.772 (2)	0.0634
65	C(53)	1.000	0.3914 (9)	0.202 (1)	0.836 (1)	0.0651
69	C(60)	1.000	0.4190 (5)	0.0761 (7)	0.5265 (7)	0.0347
70	N(61)	1.000	$0 \cdot 3226$ (5)	0.0557 (8)	0.4845 (7)	0.0461
71	C(62)	1.000	$0 \cdot 2271$ (7)	0.070 (1)	0.592 (1)	0.0557
75	C(63)	1.000	$0 \cdot 3232$ (9)	-0.019 (1)	0.368 (1)	0.0686

$R=0.0344$ for F and 2141 reflections. The crystal structure consists of chains of $\left[\mathrm{NbOCl}_{4}\left(\mathrm{OH}_{2}\right)\right]^{-}$ square bipyramids along the [110] direction connected by trigonal planar $\left[\mathrm{C}_{3}\left\{\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}\right]^{+}$ions.

Introduction. The structure of the tris(dimethylamino)cyclopropenylium ion is reported by Ku \& Sundaralingam (1972). Our structure determination was started as part of investigations of the salts of the tris(dimethylamino)cyclopropenylium ion and inorganic complex anions (Yoshida \& Tawara, 1971; Weiss \& Schloter, 1975).
In several cases these salts show - like the title compound - interesting outer-sphere-charge-transfer interactions between cation and anion leading to intensely coloured solids, although the ionic components of the salts are colourless (Weiss, 1979).

Experimental. A solution of 1.019 g tris(dimethylamino)cyclopropenylium chloride in 25 ml conc. hydrochloric acid was added to $1.352 \mathrm{~g} \mathrm{NbCl}_{5}$ dissolved in 100 ml hydrochloric acid. After stirring for 2 h the resulting mixture was filtered. Cooling the filtrate to 263 K led to orange crystals of the title compound. The specimen used for the structure determination had dimensions $0.30 \times 0.40 \times$ 0.50 mm and was packed in a thin film of glue on
account of the hygroscopic properties of the title compound.

All measurements were performed on a PW 1100 instrument, that was rebuilt and equipped with additional facilities (Gomm, 1991). Details of measurement: $\omega-2 \theta$ scan, modified Lehmann-Larsen profile analysis; lattice parameters derived from 45 reflections with $15 \leq \theta \leq 18^{\circ}$; absorption correction using a modified version of the program CAMEL JOCKEY (Flack, 1975) based on empirical ψ-scan data, max. and min. correction factor 1.45 and 2.10 ; intensities collected for $-12 \leq h \leq 12,-9 \leq k \leq 9$, $-9 \leq l \leq 9, \theta_{\max }=22^{\circ}$. Four standard reflections, no significant variation, 4282 reflections measured, 2141 unique reflections, no unobserved reflections omitted; $R_{\text {int }}$ based on F is 0.0264 .

The Nb and Cl atoms were determined using the Patterson method. From a Fourier map the rest of the non-H atoms were derived. A subsequent difference Fourier map revealed all H atoms. Fullmatrix least squares based on F; weights derived from experimental standard deviations, $w=1 / \sigma(F)$. In the final stage anisotropic temperature parameters were used for all non- H atoms and a common isotropic temperature parameter for the H atoms; the results are given in Table 1.* The final R values are: $R=0.034, w R=0.039, S=2.37$, maximum shift to e.s.d. ratio 0.01 .

Effects of anomalous dispersion are within the range of the e.s.d. of the measurement. Maximum and minimum electron density residuals are $\rho_{\max }=$ $0.85, \rho_{\text {min }}=0.71 \mathrm{e} \AA^{-3}$, respectively. Extinction corrections were applied according to the Zachariasen (1968) formula; maximum extinction factor was 2.021; form factor tables from International Tables for X-ray Crystallography (1962, Vol. III, pp. 260-270). All computations were performed on a MicroVAX II computer using an adapted version of the program system ATARI CRYSTAN88 (1989).

Discussion. Distances and angles are given in Table 2.

The distances and angles of the cation are in good agreement with those found in $\left[\mathrm{C}_{3}\left\{\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}\right]^{+} . \mathrm{ClO}_{4}^{-}$by Ku \& Sundaralingam (1972). The anion $\left[\mathrm{NbOCl}_{4}\left(\mathrm{OH}_{2}\right)\right]^{-}$consists of a square pyramidal NbOCl_{4}^{-}ion to which an $\mathrm{H}_{2} \mathrm{O}$ molecule is attached in a trans position to the O atom. There are some examples of NbOCl_{4}^{-}ions coordinated by solvent molecules (Cotton, Diebold

[^0]Table 2. Distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{C}(10)-\mathrm{N}(11)$	$1 \cdot 316$ (5)	$\mathrm{C}(43)-\mathrm{N}(41)$	
$\mathrm{C}(10)-\mathrm{C}(20)$	$1 \cdot 358$ (5)	$\mathrm{C}(50)-\mathrm{N}(51) \quad 1.313$	
$\mathrm{C}(10)-\mathrm{C}(30)$	1.373 (6)	$\mathrm{C}(50)-\mathrm{C}(40) \quad 1.35$	
$\mathrm{N}(11)-\mathrm{C}(10)$	1.316 (5)	$\mathrm{C}(50)-\mathrm{C}(60) \quad 1.38$	
$\mathrm{N}(11)-\mathrm{C}(13)$	1.433 (9)	$\mathrm{N}(51)-\mathrm{C}(50) \quad 1.3$	
$\mathrm{N}(11)-\mathrm{C}(12)$	1.485 (6)	$\mathrm{N}(51)-\mathrm{C}(53) \quad 1.45$	
$\mathrm{C}(12)-\mathrm{N}(11)$	1.485 (6)	$\mathrm{N}(51)-\mathrm{C}(52) \quad 1.46$	
$\mathrm{C}(13)-\mathrm{N}(11)$	1.433 (9)	$\mathrm{C}(52)-\mathrm{N}(51) \quad 1.4$	
$\mathrm{C}(20)-\mathrm{N}(21)$	$1 \cdot 352$ (5)	$\mathrm{C}(53)-\mathrm{N}(51) \quad 1.453$	
$\mathrm{C}(20)-\mathrm{C}(10)$	$1 \cdot 358$ (5)	$\mathrm{C}(60)-\mathrm{N}(61) \quad 1.33$	
$\mathrm{C}(20)-\mathrm{C}(30)$	$1 \cdot 360$ (5)	$\mathrm{C}(60)-\mathrm{C}(50) \quad 1.3$	
$\mathrm{N}(21)-\mathrm{C}(20)$	1.352 (5)	$\mathrm{C}(60)-\mathrm{C}(40) \quad 1.35$	
$\mathrm{N}(21)-\mathrm{C}(22)$	1.412 (9)	$\mathrm{N}(61)-\mathrm{C}(60) \quad 1.33$	
$\mathrm{N}(21)-\mathrm{C}(23)$	1.461 (6)	$\mathrm{N}(61)-\mathrm{C}(63) \quad 1.39$	
$\mathrm{C}(22)-\mathrm{N}(21)$	1.412 (9)	$\mathrm{N}(61)-\mathrm{C}(62) \quad 1.4$	
$\mathrm{C}(23)-\mathrm{N}(21)$	1.461 (6)	$\mathrm{C}(62)-\mathrm{N}(61) \quad 1.4$	
$\mathrm{C}(30)-\mathrm{N}(31)$	$1 \cdot 301$ (5)	$\mathrm{C}(63)-\mathrm{N}(61) \quad 1.39$	
$\mathrm{C}(30)-\mathrm{C}(20)$	$1 \cdot 360$ (5)	$\mathrm{Nb}(01)-\mathrm{O}(11) \quad 1.702$	
$\mathrm{C}(30)-\mathrm{C}(10)$	$1 \cdot 373$ (6)	$\mathrm{Nb}(01)-\mathrm{Cl}(12) \quad 2.35$	
$\mathrm{N}(31)-\mathrm{C}(30)$	1.301 (5)	$\mathrm{Nb}(01)-\mathrm{O}(10)$, 2.3	
$\mathrm{N}(31)-\mathrm{C}(32)$	1.435 (8)	$\mathrm{Nb}(01)-\mathrm{Cl}(13) \quad 2.3$	
$\mathrm{N}(31)-\mathrm{C}(33)$	1.455 (6)	$\mathrm{Nb}(01)-\mathrm{Cl}(15) \quad 2.38$	
$\mathrm{C}(32)-\mathrm{N}(31)$	1.435 (8)	$\mathrm{Nb}(01)-\mathrm{Cl}(14) \quad 2.38$	
$\mathrm{C}(33)-\mathrm{N}(31)$	1.455 (6)	$\mathrm{O}(10)-\mathrm{Nb}(01) \quad 2.3$	
$\mathrm{C}(40)-\mathrm{N}(41)$	1.345 (5)	$\mathrm{Nb}(02)-\mathrm{O}(21) \quad 1.70$	
$\mathrm{C}(40)-\mathrm{C}(50)$	$1 \cdot 345$ (9)	$\mathrm{Nb}(02)-\mathrm{Cl}(24) \quad 2.36$	
$\mathrm{C}(40)-\mathrm{C}(60)$	$1 \cdot 359$ (5)	$\mathrm{Nb}(02)-\mathrm{Cl}(22) \quad 2.3$	
$\mathrm{N}(41)-\mathrm{C}(40)$	$1 \cdot 345$ (5)	Nb (02)-Cl(25) $\quad 2.3$	
$\mathrm{N}(41)-\mathrm{C}(42)$	1.430 (7)	Nb (02)-O(20) $\quad 2.38$	
$\mathrm{N}(41)-\mathrm{C}(43)$	1.444 (7)	$\mathrm{Nb}(02)-\mathrm{Cl}(23) \quad 2.38$	
$\mathrm{C}(42)-\mathrm{N}(41)$	1.430 (7)	$\mathrm{O}(20)-\mathrm{Nb}(02) \quad 2.38$	
$\mathrm{C}(20)-\mathrm{C}(10)-\mathrm{N}(11)$	$) \quad 149 \cdot 7$ (6)	$\mathrm{C}(63)-\mathrm{N}(61)-\mathrm{C}(60)$	119.9 (2)
$\mathrm{C}(30)-\mathrm{C}(10)-\mathrm{N}(11)$	$150 \cdot 6$ (6)	$\mathrm{C}(62)-\mathrm{N}(61)-\mathrm{C}(60)$	118.6 (2)
$\mathrm{C}(30)-\mathrm{C}(10)-\mathrm{C}(20)$	59.7 (2)	$\mathrm{C}(62)-\mathrm{N}(61)-\mathrm{C}(63)$	119.5 (2)
$\mathrm{C}(13)-\mathrm{N}(11)-\mathrm{C}(10)$	120.8(3)	$\mathrm{Cl}(12)-\mathrm{Nb}(01)-\mathrm{O}(11)$	$98 \cdot 40$ (1)
$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(10)$	119.4 (2)	$\mathrm{O}(10)-\mathrm{Nb}(01)-\mathrm{O}(11)$	176 (2)
$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(13)$) 118.4 (2)	$\mathrm{O}(10)-\mathrm{Nb}(01)-\mathrm{Cl}(12)$	85.132 (9)
$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{N}(21)$) 148.6 (5)	$\mathrm{Cl}(13)-\mathrm{Nb}(01)-\mathrm{O}(11)$	98.46 (2)
$\mathrm{C}(30)-\mathrm{C}(20)-\mathrm{N}(21)$) $150.7(5)$	$\mathrm{Cl}(13)-\mathrm{Nb}(01)-\mathrm{Cl}(12)$	89.601 (7)
$\mathrm{C}(30)-\mathrm{C}(20)-\mathrm{C}(10)$	60.7 (2)	$\mathrm{Cl}(13)-\mathrm{Nb}(01)-\mathrm{O}(10)$	$80 \cdot 97$ (2)
$\mathrm{C}(22)-\mathrm{N}(21)-\mathrm{C}(20)$) 118.8 (2)	$\mathrm{Cl}(15)-\mathrm{Nb}(01)-\mathrm{O}(11)$	97.92 (1)
$\mathrm{C}(23)-\mathrm{N}(21)-\mathrm{C}(20)$) 119.0 (2)	$\mathrm{Cl}(15)-\mathrm{Nb}(01)-\mathrm{Cl}(12)$	88.996 (6)
$\mathrm{C}(23)-\mathrm{N}(21)-\mathrm{C}(22)$) 116.4 (2)	$\mathrm{Cl}(15)-\mathrm{Nb}(01)-\mathrm{O}(10)$	82.62 (1)
$\mathrm{C}(20)-\mathrm{C}(30)-\mathrm{N}(31)$) 149.3 (5)	$\mathrm{Cl}(15)-\mathrm{Nb}(01)-\mathrm{Cl}(13)$	163.6 (1)
$\mathrm{C}(10)-\mathrm{C}(30)-\mathrm{N}(31)$) 150.9 (6)	$\mathrm{Cl}(14)-\mathrm{Nb}(01)-\mathrm{O}(11)$	96.38 (1)
$\mathrm{C}(10)-\mathrm{C}(30)-\mathrm{C}(20)$	- 59.6 (2)	$\mathrm{Cl}(14)-\mathrm{N}(01)-\mathrm{Cl}(12)$	$165 \cdot 2$ (2)
$\mathrm{C}(32)-\mathrm{N}(31)-\mathrm{C}(30)$) $121.2(2)$	$\mathrm{Cl}(14)-\mathrm{Nb}(01)-\mathrm{O}(10)$	$80 \cdot 10$ (1)
$\mathrm{C}(33)-\mathrm{N}(31)-\mathrm{C}(30)$) 120.4 (2)	$\mathrm{Cl}(14)-\mathrm{Nb}(01)-\mathrm{Cl}(13)$	88.904 (8)
$\mathrm{C}(33)-\mathrm{N}(31)-\mathrm{C}(32)$) 117.3 (2)	$\mathrm{Cl}(14)-\mathrm{Nb}(01)-\mathrm{Cl}(15)$	88.297 (7)
$\mathrm{C}(50)-\mathrm{C}(40)-\mathrm{N}(41)$) 151.1 (6)	$\mathrm{Cl}(24)-\mathrm{Nb}(02)-\mathrm{O}(21)$	99.55 (1)
$\mathrm{C}(60)-\mathrm{C}(40)-\mathrm{N}(41)$) 148.6 (5)	$\mathrm{Cl}(22)-\mathrm{Nb}(02)-\mathrm{O}(21)$	99.18 (1)
$\mathrm{C}(60)-\mathrm{C}(40)-\mathrm{C}(50)$	60.3 (2)	$\mathrm{Cl}(22)-\mathrm{Nb}(02)-\mathrm{Cl}(24)$	161.3 (2)
$\mathrm{C}(42)-\mathrm{N}(41)-\mathrm{C}(40)$) $119.2(2)$	$\mathrm{Cl}(25)-\mathrm{Nb}(02)-\mathrm{O}(21)$	97.58 (1)
$\mathrm{C}(43)-\mathrm{N}(41)-\mathrm{C}(40)$) $120 \cdot 8$ (2)	$\mathrm{Cl}(25)-\mathrm{Nb}(02)-\mathrm{Cl}(24)$	88.978 (8)
$\mathrm{C}(43)-\mathrm{N}(41)-\mathrm{C}(42)$) 118.6 (2)	$\mathrm{Cl}(25)-\mathrm{Nb}(02)-\mathrm{Cl}(22)$	89.035 (6)
$\mathrm{C}(40)-\mathrm{C}(50)-\mathrm{N}(51)$) 150.1 (6)	$\mathrm{O}(20)-\mathrm{Nb}(02)-\mathrm{O}(21)$	180 (3)
$\mathrm{C}(60)-\mathrm{C}(50)-\mathrm{N}(51)$) 149.6 (6)	$\mathrm{O}(20)-\mathrm{Nb}(02)-\mathrm{Cl}(24)$	80.77 (1)
$\mathrm{C}(60)-\mathrm{C}(50)-\mathrm{C}(40)$	$60 \cdot 3$ (2)	$\mathrm{O}(20)-\mathrm{Nb}(02)-\mathrm{Cl}(22)$	80.50 (1)
$\mathrm{C}(53)-\mathrm{N}(51)-\mathrm{C}(50)$	119.0 (2)	$\mathrm{O}(20)-\mathrm{Nb}(02)-\mathrm{Cl}(25)$	$82 \cdot 76$ (1)
$\mathrm{C}(52)-\mathrm{N}(51)-\mathrm{C}(50)$	- 119.4 (2)	$\mathrm{Cl}(23)-\mathrm{Nb}(02)-\mathrm{O}(21)$	96.93 (1)
$\mathrm{C}(52)-\mathrm{N}(51)-\mathrm{C}(53)$) $120 \cdot 8$ (2)	$\mathrm{Cl}(23)-\mathrm{Nb}(02)-\mathrm{Cl}(24)$	88.291 (8)
$\mathrm{C}(50)-\mathrm{C}(60)-\mathrm{N}(61)$) 152.4 (6)	$\mathrm{Cl}(23)-\mathrm{Nb}(02)-\mathrm{Cl}(22)$	88.983 (7)
$\mathrm{C}(40)-\mathrm{C}(60)-\mathrm{N}(61)$) 148.2 (5)	$\mathrm{Cl}(23)-\mathrm{Nb}(02)-\mathrm{Cl}(25)$	$165 \cdot 5$ (2)
$\mathrm{C}(40)-\mathrm{C}(60)-\mathrm{C}(50)$	59.3 (2)	$\mathrm{Cl}(23)-\mathrm{Nb}(02)-\mathrm{O}(20)$	$82 \cdot 72$ (1)

\& Roth, 1988) or other ions (Dewan, Kepert, Raston \& White, 1975; Mueller \& Lorenz, 1980) in the same way. In all these structures distances and angles within the NbOCl_{4}^{-}ion reported are in agreement with our results. A salt containing an $\left[\mathrm{NbOCl}_{4}-\right.$ $\left.\left(\mathrm{OH}_{2}\right)\right]^{-}$group is reported by Klingelhoefer \& Mueller (1984) with a rather long $\mathrm{Nb}-\mathrm{OH}_{2}$ distance of $2.49 \AA$, and the H -atom positions could not be determined. We found much shorter $\mathrm{Nb}-\mathrm{OH}_{2}$ distances of 2.37 and $2.38 \AA$, which are in good agreement with the $\mathrm{Nb}-\mathrm{O}$ distance in the tetrahydrofuran adduct of NbOCl_{4}^{-}(Cotton, Diebold \&:

Roth, 1988). In comparison with the $\mathrm{Nb}-\mathrm{O}$ distance of $1.99 \AA$ in $\left(\mathrm{NH}_{4}\right) \mathrm{NbOBr}_{4}$ found by Hoerner, Hiller \& Straehle (1988), where the Nb atoms are connected by symmetrical linear oxo bridges forming chains of polymeric $\left[\mathrm{NbOBr}_{4}^{-}\right]_{n}$ anions, this $\mathrm{Nb}-\mathrm{OH}_{2}$ distance is long.
In our compound we observe another type of anionic chain formed by hydrogen bonding. An H atom of one $\left[\mathrm{NbOCl}_{4}(\mathrm{OH})_{2}\right]$ ion is bonded to the O atom at the apex of the next anion (Fig. 1). The observed $\mathrm{H} \cdots \mathrm{O}$ distances of 1.92 and $2.17 \AA$ are in good agreement with those values given in the literature. The hydrogen bonds connect neighbouring anions to form chains in the [110] direction.
A careful inspection of the neighbourhood of the $\mathrm{H}_{2} \mathrm{O}$ groups shows significant differences indicating a two-membered chain. The coordination polyhedron (Fig. 2a) of $\mathrm{H}_{2} \mathrm{O}(10)$ shows a relatively short distance (O10-N21 $3 \cdot 15 \AA$) to one $\mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}$ group of a cation. This spatial relation is missing for $\mathrm{H}_{2} \mathrm{O}(20)$ (Fig. $2 b$) ($\mathrm{O}-\mathrm{N}$ distances $>4.0 \AA$). Similar relations can be found in related compounds. A more detailed publication with respect to the connection patterns in this class of compounds is in preparation.

Compounds containing the $\left[\mathrm{NbOCl}_{4}\left(\mathrm{OH}_{2}\right)\right]^{-}$ion such as the tetraethylammonium salt (Kanzelmeyer, Ryan \& Freund, 1956) or the pyridinium salt (Weinland \& Storz, 1907) are colourless solids. The salt $\left[\mathrm{C}_{3}\left\{\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{3}\right]^{+} . \mathrm{ClO}_{4}^{-}(\mathrm{Ku} \&$ Sundaralingam, 1972) is colourless too. So the intense orange colour of the title compound can be attributed to an interionic outer-sphere-charge-transfer transition. This conclusion is supported by the observation that the colour vanishes in solution and by the value of the shortest

Fig. 1. The structure of the title compound.

(a)

(b)

Fig. 2. The neighbourhood of the $\mathrm{H}_{2} \mathrm{O}$ groups; $(a) \mathrm{H}_{2} \mathrm{O}(10)$ and (b) $\mathrm{H}_{2} \mathrm{O}(20)$.
$\mathrm{Cl}-\mathrm{N}$ distance of $3.49 \AA$, which is in the typical range for interionic charge-transfer salts. A detailed publication with respect to the theoretical approach to the effect is in preparation.

Part of this work was supported by the 'Deutsche Forschungsgemeinschaft' and 'Fonds der Chemischen Industrie'.

References

ATARI CRYSTAN88 (1989). Proc. CIC Meet., Tübingen, Germany. Berlin: Springer-Verlag.
Cotton, F. H., Diebold, M. P. \& Roth, W. J. (1988). Inorg. Chem. 27, 2347-2349.
Dewan, J. C., Kepert, D. L., Raston, C. L. \& White, A. H. (1975). J. Chem. Soc. Dalton Trans. pp. 2031-2033.

Flack, H. D. (1975). J. Appl. Cryst. 8, 520-521.
Gomm, M. (1991). J. Appl. Cryst. In preparation.
Hoerner, M., Hiller, W. \& Straehle, J. (1988). Z. Naturforsch. Teil B, 43, 981-983.
Kanzelmeyer, J. H., Ryan, J. \& Freund, H. (1956). J. Am. Chem. Soc. 78, 3020-3022.
Klingelhoefer, P. \& Mueller, U. (1984). Z. Anorg. Allg. Chem. 516, 85-87.
Ku, A. T. \& Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 1688-1700.
Mueller, U. \& Lorenz, I. (1980). Z. Anorg. Allg. Chem. 463, 110-112.
Weinland, R. F. \& Storz, L. (1907). Z. Anorg. Allg. Chem. 54, 223-234.
Weiss, R. (1979). Tetrahedron Lett. 35, 3295-3296.
Weiss, R. \& Schloter, K. (1975). Tetrahedron Lett. 40, 34913493.

Yoshida, Z. \& Tawara, Y. (1971). J. Am. Chem. Soc. 92, 2573.
Zachariasen, W. H. (1968). Acta Cryst. A24, 421-427.

Long $\mathbf{Z r}-\mathbf{S}$ Bonds in the Structure of the Stereochemically Nonrigid Complex, $\operatorname{Bis}\left(\boldsymbol{\eta}^{5}\right.$-cyclopentadienyl)(N, N-dimethyldithiocarbamato)phenoxyzirconium(IV)

By Douglas A. Femec* and Thomas L. Groy
Department of Chemistry, Arizona State University, Tempe, AZ 85287-1604, USA
and Robert C. Fay
Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA

(Received 9 July 1990; accepted 2 January 1991)

Abstract

C}_{19} \mathrm{H}_{21} \mathrm{NOS}_{2} \mathrm{Zr}, M_{r}=434 \cdot 73\), monoclinic, $P 2_{1} / n, a=8 \cdot 126$ (6), $b=8 \cdot 692$ (7), $c=26 \cdot 626$ (12) \AA, $\beta=98 \cdot 19(5)^{\circ}, \quad V=1861(3) \AA^{3}, \quad Z=4, \quad D_{m}=1 \cdot 53$,

^[* Author to whom correspondence should be addressed. Present address: EG\&G Idaho, PO Box 1625, Idaho Falls, ID 83415-7111, USA.]

0108-2701/91/091811-04\$03.00
$D_{x}=1.55 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=0.71073 \AA, \quad \mu=$ $8.0 \mathrm{~cm}^{-1}, \quad F(000)=888, \quad T=295 \mathrm{~K}, \quad R=0.12$ for 5313 unique data, 2082 of which were observed. The expected bent-metallocene geometry is observed. The $\mathrm{Zr}-\mathrm{S}$ bonds to the bidentate dithiocarbamate ligand (2.656 and $2.789 \AA$) are unusually long, thus © 1991 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and bond lengths and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53942 (28 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

